Mathematical Exploration: Emulating Computer Calculations in

Order to Manipulate a Cube’s On-Screen Appearance

May 2020 Session.
2002 Words.

Contents
1 Problem 2
2 Context 2
3 Coordinates and Meshes 3
3.1 The Coordinate System e 3
3.2 Meshes and Vertices 3
3.3 Cube Vertices e 3
4 Scaling 5
4.1 The Scale Matrix e)
4.2 Application to Problem 5
5 Rotations 6
51 FEuler Angles 6
5.2 Quaternions e 7
5.2.1 Rotation Angle and Axis L L L 7
5.2.2 Quaternion Normalization 8
5.2.3 Axis and Angle to Quaternion oL 9
5.2.4 Finding the Quaternion oL L o 9
5.2.5 Converting to a Rotation Matrix 10
5.3 Rotating the Vertices« . e 10
6 Conclusion 11

1 Problem

The aim of this exploration is to emulate what a computer would calculate when it manipulates the
appearance of an object on a screen. For simplicity, I am going to be exploring what these calculations
would be for a cube, as opposed to complicated models used in the real world. More specifically, 1
will explore what mathematical steps are required for the following on-screen transformation: Firstly, a
twicefold increase in the length of the edges (increasing the cube’s volume by 8). Secondly, a rightward
7 radian rotation of the cube. Thirdly, a downward 7 radian rotation of the cube. This is shown
graphically in figure 1.

By exploring these steps, I will touch upon various concepts. I will be using basic vector algebra,
which is the only topic covered in the scope of the syllabus. Additionally, I will mainly be working with
matrices and performing matrix arithmetic. The rotations will cover Euler angles as well as some aspects

of quaternions.

initial final
cube cube

Figure 1: Visual representation of the problem

2 Context

OpenGL is a software which is a tool that allows programmers to perform mathematical calculations and
display graphics on the screen to the user [3]. Graphical processing units are hardware chips that allow
points, lines, and triangles to be rendered on a display [2]. Whilst quadrilaterals can also be rendered,
triangles are preferred as they are able to model complicated surfaces easily, and consume less power.
Simply put, OpenGL allows programmers to forward instructions directly to the graphical processing
unit. As such, this exploration will be me emulating multiple of these instructions (scaling and rotating).

As I am emulating the mathematical steps, in order to stay consistent with what the computer would
do, there need to be certain restrictions. There are a few deviations from standard cartesian mathematics,
but these will be elaborated upon later. The steps must also be achievable on a Windows computer,
with a programming language that supports OpenGL, such as C++.

3 Coordinates and Meshes

3.1 The Coordinate System

OpenGL’s coordinate system differs from the three dimensional cartesian coordinate system. The X axis
goes rightward, the Y axis goes upward, and the Z axis out of the page. This is shown on figure 2.

=

Figure 2: OpenGL coordinate system (from https://learnopengl.com)

3.2 Meshes and Vertices

A mesh is a collection of vertices connected by edges which then form the faces of an object. The
vertices are defined as position vectors represented as 1x4 matrices. Matrices are numbers/expressions
that are arranged into columns and rows. Vj 1 to Vj 3 represent the position vector, the x, y, and z values,
respectively. V34 = 1 is used to tell OpenGL that V' is a position, rather than a direction (P 4 = 0).
Direction matrices are beyond the scope of this investigation, and as such the fourth row only exists as
compatibility for the aforementioned emulation.

; x,y,2 €ER

<
Il
_= N e 8

3.3 Cube Vertices

Because graphics processing units work with two dimensional triangles, the cube needs to be split up
into its faces. A cube has six faces, each of which can be split up again into two equal-sized triangles. As
such, a cube consists of 36 individual vertices, duplicates of 8 unique vertices. Only the unique vertices
will be calculated for performance reasons, but all 36 need to be specified in OpenGL.

. . E
A
h.-‘-
G o
y H
2 C {0,0,0)
D

Figure 3: Diagram representing the vertices in a 3D OpenGL coordinate system

Figure 3 shows the 8 unique verices A to H graphically. The vertex C' is located at the origin. As
such, the matrices I defined for the vertices are shown in equations 1 and 2.

1 1
1 1
A= 0 E = 1
1] 1]
* o
1 1
B = 0 F= 1
-) - @)
* o
0 0
¢= 0 G = -1
1] 1]
* o
0 0
D= 0 H= .
1] |1

4 Scaling
4.1 The Scale Matrix

In order to make one of the cube’s edges twice as long, at least one of the two vertices needs to move
such that the displacement between the two increases twicefold. More specifically, if one represents the
displacement from one vertex to another (i.e. an edge) as a vector, the vector’s magnitude would need to
be twicefold. This can be achieved by simply multiplying the vertices (as position matrices) by a scale
matrix.

A matrix that scales by a factor of a on the x axis, a factor of b on the y axis, and a factor of ¢ on
the z axis takes the following form:

a 0 0 0
0 b 0 0

S = 00 ¢ 0 ; a,b,ceR
00 0 1

Because the cube will be scaled uniformly (such that it remains a cube, rather than becoming a
rectangle), a = b = ¢. The column Sy is required because of the nature of matrix multiplication (the
position matrix will be multiplied by the scale matrix). The number of columns on the scale matrix
must be equal to the number of rows on the position matrix.

4.2 Application to Problem

The problem requires the cube’s edges to be twice the length, therefore the scale matrix looks as follows:

O O O N
O O N O
SN OO
_— o o o

This can then be applied to the vertices that were defined in the previous section. The new position
matrices are shown in equations 3 and 4.

20 0 0 1 2 20 0 0 1 9
020 0 1 2 02 0 0 1 9
A=10 0 2 o] % |o| = |o E=10 0 2 o] *|-1] = |2
oo o0 1] |1 |1 0o o0 1] |1] |1
2 0 0 0] [o] O] 2 0 0 0] [0] T[0]
020 0 1 2 02 0 0 1 9
B=10 0 2 o/ %ol = |o F=10 0 2 o] *|-1] = |2
00 0 1 1 1 000 1] | 1
- I = i (3) - I - -2 4
20 0 0 0 0 200 0 0 0
020 0 0 0 020 0 0 0
=10 0 2 o] *|o| = |o G=10 0 2 o *|-1] = |-2
oo o0 1] |1 |1 oo o0 1] |1] |1
[2 0 0 O] (1] [2] (2 0 0 O] (1] (2]
020 0 0 0 0200 0 0
D=1 0 2 ol *lo| = o H=1g 0 2 o] ¥ |=1] = |2
0o o0 1] |1 |1 oo o0 1] |1] |1

5 Rotations

Rotations can be done in two ways: Euler angles and quaternions. I will be elaborating upon both of
these, but only apply quaternions to solve the problem.

5.1 Euler Angles

FEuler angles are a set of three angles that describe the orientation of a mesh, and by extension, each
vertex [8]. An example can be seen in figure 4, but it should be noted that these are for a standard Carte-
sian coordinate system, whereas this exploration uses OpenGL’s system. It is important to distinguish
between orientations and rotations. Orientations describe the state of the object, whereas rotations are
the process of orientating an object to be in this state [5]. As the Euler angles describe an orientation, a
respective rotation matrix needs to be defined in order to translate (rotate) the mesh into the particular
orientation described by the Euler angles.

Yaw () el

ROII%XI (North)

Y, (East)

Pitch (0)

Z, (Down)

Figure 4: Example of how Euler angles can portray orientation on a model plane [6]

Euler angles can be specified in different orders, and this order will change the final orientation of
the mesh [8]. This is because each successive rotation contains all the previous rotations. This will be
relevant later on. Different orders of angles are given separate names. Proper euler angles describe z-z-z,
X-Y-I, Yy-2-y, 2-Y-z, T-2-T, y-2-y orientations [8]. Tait-Bryan angles describe z-y-z, y-z-z, z-2-y, -2-y, 2-y-
x, y-z-z orientations [8]. Within graphics processing, the order of angles is generally specified as y-z-x,
which are Tait-Bryan angles. However, it should be noted that these are nonetheless referred to as Euler
angles in graphics jargon.

Every one of the three components of Euler angles can be expressed as matrices. Assuming a, b and
c are the angles for X, Y and Z respectively, the following formulae can be used [7]:

[cos(b) 0 sin(b) 0

0 1 0 0
Y= sin(b) 0 cos(b) 0 beR (6)

0 0 0 1

1 0 0 0 [cos(c) —sin(e) 0 O]

_ |0 cos(a) —sin(a) Of _|sin(c¢) cos(c) 0 O
X = 0 —sin(a) cos(a) 0]’ aeR (5 Z= 0 0 1 o] €€ R (7)

0 0 0 1 0 0 0 1]

Again, the fourth column is included to allow the multiplication with the position matrix. The final

rotation matrix can then be found by multiplying these components. For a y-z-x order, R=Y x Z x X,
where R is the final rotation matrix that can be applied to all vertices.

However, Euler (or Tait-Bryan) angles can be problematic as they can create a gimbal lock. These
can be explained using an object, such as a plane, in a gimbal. As aforementioned, each rotation also
includes the previous rotations. It some cases, this can lead to two ”gimbals” aligning with each other,
often when angles approach 7 radians. This is shown in figure 5.

Figure 5: A gimbal lock on an aeroplane [4]

Here, two gimbals are aligned horizontally. As such, one gimbal is ”"lost”, they are ”stuck together”,
and rather than being able to move three gimbals, only two can be used. Mathematically speaking, this
means that in this scenario one dimension is lost. This is undesireable, as rotations often need to be
three dimensional. While it is possible to solve my problem with Euler angles, I will be using quaternions
instead, as these are guaranteed to work for anyting without creating gimbal locks.

5.2 Quaternions

Quaternions are number systems that extend that of complex numbers [9]. Complex numbers take the
form of a real part and an imaginary part, e.g.:

z=a+bi; a,beR,ze€C
Quaternions take the form of:
qg=w+ai+bj+ck; w,a,b,ceR,qgeH

Where w,a,b,c € R and i, j and k are the fundamental quaternion units. In this case, w refers to
the real part, and ai + bj + ck the vector part. Quaternions are much more complicated, but in this
investigation I will not go in depth into them, and only apply what is neccessary to solve my problem.

5.2.1 Rotation Angle and Axis

There are two components to quaternion rotations [5]. Firstly, a rotation axis needs to be defined. This
is a unit vector representing the direction of the rotation axis. Then, an angle describing the magnitude
of the rotation about the axis needs to be defined. This is shown in figure 6

Sotation Axis

Figure 6: A rotation with angle a of a point around a rotation axis

Due to both the angles being 7 radians, this is also the rotation angle. I found the axis graphically.
Since the rotations are done on the X and Y axes, I found the four possible direction vectors. These are:

1y (-1 1 (-1
a=[(1],0=(1],e=[-1],d=|-1
0 0 0 0

By graphing these vectors and performing (imaginary) roations around the axis they create, I deduced

that the correct axis was b. Next, I normalized the vector to get a unit vector (this is important later
on):

> (]
Il [l
e L
+

Cie

5.2.2 Quaternion Normalization

Before moving on, another concept is vital for quaternion rotations. In order to painlessly convert
quaternion rotations into a matrix form, the quaternion needs to be normalized [10]. Normalized/unit

quaternions have magnitude 1. They are normalized exactly the same way as vectors are [1], just with
an additional component, shown in equation 9

qg=w+ai+bj+ck; w,a,b,ce R,ge H

o4

T gl 9)
w + ai + bj + ck

Gnorm =

Vw2 + a2 + b2 + 2
5.2.3 Axis and Angle to Quaternion

The rotation axis (unit vector, ©) and angle (f) can be converted into quaternions using the following

formulae [5]:
W = COoS 0
B 2

avl~sin()
b:’Ug'SiIl<>
Cc = V3 -] Q
= V3 - S1n B

This makes sense because quaternions consist of a scalar and vector component. With a unit vector
ai+b%j+ c*k = 1, this can be combined with Pythagorean’s identity of cos?(6) +sin®(f) = 1 [7]. While
Wolfram MathWorld introduces this idea [7], it is not very clear and I would like to offer a more concrete

proof.
cos? (Z) + (1 - sin?

+ ((azi + 1% + k) - sin?
(@)) pa @) @) "
o 0 () (o () (o ()

This is a form of Vw2 + a2 + b2 + ¢2 = 1, a unit quaternion. Here, w, a,b and ¢ are the individual
components laid out in equation 10.

NID oD

5.2.4 Finding the Quaternion

Using the previously determined unit vector b:

2> (12)

Therefore, the quaternion can be expressed as:
q=0.924 —0.271i + 0.271j; g€ H

This quaternion, g, essentially describes the rotation that the cube will undergo in order to be in the
desired orientation. It will be applied to each individual vertex in order to create a new vertex. These
new vertices will form the final mesh of the rotated cube. However, in order to be able to do this, the
quaternion needs to be converted to a rotation matrix.

5.2.5 Converting to a Rotation Matrix

Converting to a rotation matrix can be done using a formula [10]. The mathematics behind it is beyond
my capabilities and the scope of the investigation. Yet again, I've added another column to allow
multiplication with position matrices.

1-2(g0 4+ ¢2) 209y — 4=0w) 2(q2G: + qyGw)
R— 2(‘]:&‘]3} + (Iz%v) 1- 2(%25 + QE) Q(Qy(h - Qwa)
2(QzQz - quw) 2(Qsz + QzQw) 1- 2((]925 + qz)

0 0 0

; where ¢ € H, ||q]| =1

_ o O O

When plugging in the previously found quaternion, ¢, into the equation, it yields the following rotation
matrix:

0.854 —0.146 0.5 O

= —0.146 0.854 05 0
| =05 -0.5 0.707 0
1

0 0 0

This is the rotation matrix that can be applied to each individual vertex.

5.3 Rotating the Vertices

Finally, all the vertices can be transformed by multiplying the position matrices by the rotation matrix
in order to form the new vertex positions. The new position matrix will again be denoted as *, and are
shown in equations 13 and 14.

10

[1.416 [0.416
1.416 0.416
Ax =R x A= 9 FEx=Rx FE= 3414
. 1 . 1 -
[—0.292 [—1.292]
1.708 0.708
Bx=RxB= . Fsx=RxF = 9414
! (13) L (14)
'0 S
Cx=RxC=|Y Ge—RxG=| 1
= = lo = = | -1.414
_1 - 1 -
[1.708 0.708
~0.292 —1.292
Dx=Rx D= 1 Hx =R x H = 9414
1 1

Now that the vertices of a scaled and rotated cube have been found, the mesh is complete. The final
step is to group vertices together to form 12 equal area triangles.

6 Conclusion

With the new vertices of the mesh, the investigation is complete. The twelve triangles can now be fed
into OpenGL with their respective vertices. These triangles are shown in table 1, the vertices of each
triangle are simply in alphabetical order.

Triangle || Vertex 1 | Vertex 2 | Vertex 3
T A* B* C*
T, A* C* D*
15 E* F* G*
T, E* G* H*
T5 A* B* E*
Ts B* E* F*
T c* D* G*
T D* G* H*
Ty B* C* G*
Tho B* F* G*
T A* D* H*
T1o A* E* H*

Table 1: The twelve triangles to be fed into OpenGL

There need to be several more steps before the result is actually visible on-screen. The colour
(gradient) of each triangle needs to be specified, in this case two triangles will share one solid colour to
form a cube face. Then, everything would have to go through a shader program before it is actually
rendered on a display.

11

Under normal circumstances, a programmer will define the vertices of the mesh, and do one of two
things. Either, apply a movement matrix to the ”camera”, such that the camera moves around the
object, making it appear as if there was movement, when in fact, the camera is the only thing moving.
Alternatively, they will give the program a rotation axis with an angle or Euler/Tait-Bryan angles, after
which the program calculates the rotation quaternion and matrix. This matrix can then be applied to
the coordinates. However, mathematically this is not particularly interesting. As such that is why I chose
to emulate the second option manually, up to creating the final mesh, for my exploration. This mesh I
found can then be inserted, as aforementioned, into OpenGL, to continue the rest of the computation.

Nonetheless, a cube is an excellent example of how vectors, matrices, quaternions and trigonometry
work together to solve a problem. Taking this investigation further, one could find more complicated
meshes (e.g. of a curved surface) and apply rotations to those.

12

References

Peter Petrov (https://math.stackexchange.com/users/116591 /peter-petrov). Normalizing a quater-
nion. URL: https://math.stackexchange.com/q/1703467 (visited on 02/10/2020).

jalf (https://stackoverflow.com/users/33213/jalf). Are triangles a gpu restriction or are there other
rendering pathways? URL: https://stackoverflow.com/a/12495652 (visited on 03/04/2020).

About OpenGL. URL: https://www.opengl.org/about/ (visited on 03/04/2020).

Euler (gimbal lock) Exzplained. URL: https://www.youtube.com/watch?v=zc8b2Jo7mno (visited
on 02/10/2020).

OpenGL Tutorial. URL: https://www.opengl-tutorial.org/ (visited on 12/19/2019).

Understanding Fuler Angles. URL: http: //www . chrobotics . com/library/understanding-
euler-angles (visited on 02/10/2020).

Eric Weisstein. Euler Angles. URL: http://mathworld.wolfram.com/EulerAngles.html (visited
on 02/10/2020).

Wikipedia contributors. Fuler angles — Wikipedia, The Free Encyclopedia. 2020. URL: https :
//en.wikipedia.org/wiki/Euler_angles (visited on 02/10/2019).

Wikipedia contributors. Quaternions — Wikipedia, The Free Encyclopedia. 2019. URL: https :
//en.wikipedia.org/wiki/Quaternion (visited on 12/19/2019).

Wikipedia contributors. Quaternions and spatial rotation — Wikipedia, The Free Encyclopedia.
2019. URL: https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation (visited on
12/19/2019).

13

